skip to main content


Search for: All records

Creators/Authors contains: "Peng, Ye"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A plausible origin of the seismically observed mid-lithospheric discontinuity (MLD) in the subcontinental lithosphere is mantle metasomatism. The metasomatized mantle is likely to stabilize hydrous phases such as amphiboles. The existing electrical conductivity data on amphiboles vary significantly. The electrical conductivity of hornblendite is much higher than that of tremolite. Thus, if hornblendite truly represents the amphibole varieties in MLD regions, then it is likely that amphibole will cause high electrical conductivity anomalies at MLD depths. However, this is inconsistent with the magnetotelluric observations across MLD depths. Hence, to better understand this discrepancy in electrical conductivity data of amphiboles and to evaluate whether MLD could be caused by metasomatism, we determined the electrical conductivity of a natural metasomatized rock sample. The metasomatized rock sample consists of ~87% diopside pyroxene, ~9% sodium-bearing tremolite amphibole, and ~3% albite feldspar. We collected the electrical conductivity data at ~3.0 GPa, i.e., the depth relevant to MLD. We also spanned a temperature range between 400 to 1000 K. We found that the electrical conductivity of this metasomatized rock sample increases with temperature. The temperature dependence of the electrical conductivity exhibits two distinct regimes. At low temperatures <700 K, the electrical conductivity is dominated by the conduction in the solid state. At temperatures >775 K, the conductivity increases, and it is likely to be dominated by the conduction of aqueous fluids due to partial dehydration. The main distinction between the current study and the prior studies on the electrical conductivity of amphiboles or amphibole-bearing rocks is the sodium (Na) content in amphiboles of the assemblage. Moreover, it is likely that the higher Na content in amphiboles leads to higher electrical conductivity. Pargasite and edenite amphiboles are the most common amphibole varieties in the metasomatized mantle, and our study on Na-bearing tremolite is the closest analog of these amphiboles. Comparison of the electrical conductivity results with the magnetotelluric observations constrains the amphibole abundance at MLD depths to <1.5%. Such a low-modal proportion of amphiboles could only reduce the seismic shear wave velocity by 0.4–0.5%, which is significantly lower than the observed velocity reduction of 2–6%. Thus, it might be challenging to explain both seismic and magnetotelluric observations at MLD simultaneously. 
    more » « less
  2. Abstract

    Slab surface temperature is one of the key parameters that incur first-order changes in subduction dynamics. However, the current thermal models are based on empirical thermal parameters and do not accurately capture the complex pressure–temperature paths of the subducting slab, prompting significant uncertainties on slab temperature estimations. In this study, we investigate whether the dehydration-melting of glaucophane can be used to benchmark the temperature in the slab. We observe that dehydration and melting of glaucophane occur at relatively low temperatures compared to the principal hydrous phases in the slab and produce highly conductive Na-rich melt. The electrical properties of glaucophane and its dehydration products are notably different from the hydrous minerals and silicate melts. Hence, we conclude that the thermodynamic instability of glaucophane in the slab provides a unique petrological criterion for tracking temperature in the present-day subduction systems through magnetotelluric profiles.

     
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    Abstract We investigated the structure, equation of state, thermodynamics, and elastic properties of tremolite amphibole [Ca2Mg5Si8O22(OH)2] up to 10 GPa and 2000 K, using first principles simulations based on density functional perturbation theory. We found that at 300 K, the pressure-volume results can be adequately described by a third-order Birch-Murnaghan equation of state with bulk moduli K0 of 78.5 and 66.3 GPa based on local density approximation (LDA) and generalized gradient approximation (GGA), respectively. We also derived its coefficients of the elastic tensor based on LDA and GGA and found that the LDA result is in good agreement with the experimental results. At 300 K, the shear modulus G0 is 58.0 GPa based on LDA. The pressure derivative of the bulk modulus K′ is 5.9, while that of the shear modulus G′ is 1.3. The second Grüneisen parameter, or δT = [–1/(αKT)](∂KT/∂T)P, is 3.3 based on LDA. We found that at ambient conditions, tremolite is elastically anisotropic with the compressional wave velocity anisotropy AVP being 34.6% and the shear wave velocity anisotropy AVS being 27.5%. At higher pressure corresponding to the thermodynamic stability of tremolite, i.e., ~3 GPa, the AVP reduces to 29.5%, whereas AVS increases to 30.8%. To evaluate whether the presence of hydrous phases such as amphibole and phlogopite could account for the observed shear wave velocity (VS) anomaly at the mid-lithospheric discontinuity (MLD), we used the thermoelasticities of tremolite (as a proxy for other amphiboles), phlogopite, and major mantle minerals to construct synthetic velocity profiles. We noted that at depths corresponding to the mid-lithosphere, the presence of 25 vol% amphibole and 1 vol% phlogopite could account for a VS reduction of 2.3%. Thus based on our thermoelasticity results on tremolite amphibole, it seems that mantle metasomatism could partly explain the MLD. 
    more » « less
  5. In this study, we use f irst-principles molecular dynamics simulations to explore the behavior of anhydrous aluminosilicate melt with a stoichiometry of NaAlSi2O6 up to pressures of ∼30 GPa and temperatures between 2500 and 4000 K. We also examine the effect of water (∼4 wt % H2O) on the equation of state and transport properties of the aluminosilicate melt and relate them to atomistic scale changes in the melt structure. Our results show that water reduces the density and bulk modulus of the anhydrous melt. However, the pressure derivative of the bulk modulus of the hydrous melt is larger than that of the anhydrous melt. The pressure dependence of the transport property exhibits an anomalous behavior. At a pressure of ∼12 GPa, anhydrous aluminosilicate melts exhibit maxima in diffusion and minima in viscosity. Dissolved water in melts also affects both diffusion and viscosity. In hydrous aluminosilicate melts, the maxima in diffusion and the minima in viscosity occur at ∼14 GPa. The anomalous behavior of transport properties is related to the pressure-induced changes in the melt structure. At shallower depths, i.e., up to 100 km, relevant for subduction zone settings, the lower density compounded by the lower viscosity of hydrous aluminosilicate melts is likely to provide buoyancy for upward migration. At greater depths of ∼180−200 km, greater compressibility of the hydrous aluminosilicate melts together with the minimum viscosity could hinder magma migration and may explain the presence of a partial melt layer at the lithosphere−asthenosphere boundary. 
    more » « less
  6. null (Ed.)